A Novel Coupled Model for Monthly Rainfall Prediction Based on ESMD-EWT-SVD-LSTM
Ziyu Li and
Xianqi Zhang ()
Additional contact information
Ziyu Li: North China University of Water Resources and Electric Power
Xianqi Zhang: North China University of Water Resources and Electric Power
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2024, vol. 38, issue 9, No 11, 3297-3312
Abstract:
Abstract Precise predicting of rainfall is paramount for effective water resource management, ecological conservation, and the prevention of droughts and floods. Influenced by numerous variables, the process of rainfall is complex and the rainfall series exhibit high degrees of nonlinearity, making it challenging for traditional statistical prediction models to accurately capture the characteristics of rainfall series. Therefore, this paper proposes a new coupled model for predicting monthly rainfall based on Extreme-Point Symmetric Mode Decomposition (ESMD), Empirical Wavelet Transform (EWT), Singular Value Decomposition (SVD) and Long Short-Term Memory Neural Network (LSTM). By training and evaluating the ESMD-EWT-SVD-LSTM model on Kaifeng City’s monthly rainfall data from 2009 to 2020 and comparing its predictions with those of the ESMD-SVD-LSTM, SVD-LSTM, LSTM models, the analysis reveals that: the quadratic decomposition of ESMD-EWT and SVD denoising can further reduce the complexity of rainfall data, obtain more predictable feature IMFs, and enhance the precision in LSTM predicting; in comparison with alternative models, the ESMD-EWT-SVD-LSTM coupled model shows the highest accuracy in predicting results, with MAE of 4.96, RMSE of 6.13, and SI of 0.12, indicating that the ESMD-EWT-SVD-LSTM model has strong nonlinear process learning ability and accuracy in regional monthly rainfall prediction. This study can offer dependable scientific grounding and technical assistance for regional rainfall predicting, water resources planning, and disaster mitigation.
Keywords: Extreme-point symmetric mode decomposition; Empirical wavelet transform; Singular value decomposition; Long short-term memory neural network; Rainfall prediction (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-024-03815-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:38:y:2024:i:9:d:10.1007_s11269-024-03815-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-024-03815-x
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().