Reservoir Risk Operation of 'Domestic-Production-Ecology' Water Supply Based on Runoff Forecast Uncertainty
Tao Bai,
Qianglong Feng,
Dong Liu () and
Chi Ju
Additional contact information
Tao Bai: Xi’an University of Technology
Qianglong Feng: Xi’an University of Technology
Dong Liu: Xi’an University of Technology
Chi Ju: Power China Kunming Engineering Corporation Limited
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2024, vol. 38, issue 9, No 15, 3369-3388
Abstract:
Abstract Water supply operation of a reservoir group is a critical strategy for mitigating conflicts between water resource supply and demand in a basin. However, the uncertainty of runoff forecast presents significant challenges to this operation. To explore the risk laws of the complex water supply process, this study focuses on analyzing the three primary source streams and the main stream of the Tarim River, the largest inland river in China. Initially, a runoff forecast model is developed utilizing Long Short-Term Memory Artificial Neural Networks (LSTM-ANN) to generate runoff datasets. Subsequently, a theoretically optimal operation process for the reservoir group is derived through a long-series deterministic multi-objective operation, which establishes boundary constraints for water supply risk operation. Finally, the runoff forecast results are integrated into an uncertainty water supply risk operation model to assess the associated water supply risk. The results indicate that: 1) Due to varying guarantee rates and water supply priorities among different sectors, the risk of ecological water supply is the highest, followed by agriculture and then domestic-production. 2) Within an effective forecast range of 0% to 20%, the most significant increase occurs when the error ranges between 5 to 10%. 3) As the reservoir regulation capacity in mountainous areas increases, the average water supply risk value for agriculture decreases from 0.086 to 0.040, representing a 53.1% risk reduction. The research results are of great significance to the reservoir group risk operation and the water supply safety in the basin.
Keywords: Runoff forecast; Deterministic optimization operation; Reservoir group risk operation; Domestic-production-ecology water supply; Water supply risk (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-024-03819-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:38:y:2024:i:9:d:10.1007_s11269-024-03819-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-024-03819-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().