Application of Machine Learning Models for Short-term Drought Analysis Based on Streamflow Drought Index
Majid Niazkar (),
Reza Piraei () and
Mohammad Zakwan ()
Additional contact information
Majid Niazkar: Euro-Mediterranean Center On Climate Change
Reza Piraei: Shiraz University
Mohammad Zakwan: Maulana Azad National Urdu University (MANUU)
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2025, vol. 39, issue 1, No 5, 108 pages
Abstract:
Abstract This study investigates the drought condition based on streamflow drought index (SDI) using various machine learning (ML) techniques. The ML models include Multiple Linear Regression, Artificial Neural Networks, K-Nearest Neighbors (KNN), and eXtreme Gradient Boosting Regressor (XGBR). The SDI-based drought analysis is conducted at 3, 6, 9, and 12 months at two stations in the Drava River considering six different lead times. Furthermore, the reliability of ML-based estimations is explored. Overall, the obtained results demonstrated that performances of the ML models vary for each case scenario. Moreover, the optimal choice of lead times varies across different SDIs, with 3 for the 3-month SDI, 4 for the 6- and 9-month SDIs, and 6 for the 12-month SDI. It can be concluded that with the increase of SDI month, the optimal lead time also enhances. Furthermore, the reliability analysis reveales that while KNN models tend to overfit, XGBR models provided a proper balance between the training and testing reliability, making it a desirable choice for SDI prediction. Additionally, the confidence percentage (CP) analysis indicated a surge in CP with an increase in the SDI month, demonstrating the significant role of the number of SDI months. Therefore, this study highlights the importance of selecting appropriate lead times, SDI months, and ML models to improve predictive performance and reliability in short-term drought forecasting.
Keywords: Drought; Streamflow Drought Index; Extreme Event; Machine Learning; XGBoost (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-024-03959-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:39:y:2025:i:1:d:10.1007_s11269-024-03959-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-024-03959-w
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().