Advancing Reservoir Water Level Predictions: Evaluating Conventional, Ensemble and Integrated Swarm Machine Learning Approaches
Issam Rehamnia () and
Amin Mahdavi-Meymand ()
Additional contact information
Issam Rehamnia: Badji-Mokhtar Annaba University
Amin Mahdavi-Meymand: Polish Academy of Sciences
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2025, vol. 39, issue 2, No 12, 779-794
Abstract:
Abstract Accurate estimation of reservoir water level fluctuation (WLF) is crucial for effective dam operation and environmental management. In this study, seven machine learning (ML) models, including conventional, integrated swarm, and ensemble learning methods, were employed to estimate daily reservoir WLF. The models comprise multi-linear regression (MLR), shallow neural network (SNN), deep neural network (DNN), support vector regression (SVR) integrated with homonuclear molecules optimization (HMO) and particle swarm optimization (PSO) meta-heuristic algorithms, classification and regression tree (CART), and random forest (RF). These models were trained and evaluated using in situ data from three embankment dams in Algeria: the Kramis dam, the Bougous dam, and the Fontaine Gazelles dam. Performance evaluation was conducted using statistical indices, scatter plots, violin plots, and Taylor diagrams. The results revealed superior prediction accuracy for the Fontaine Gazelles dam compared to Kramis and Bougous dams. Particularly, the RF, DNN, and SVR-HMO models exhibited consistent and excellent predictive performance for WLF at the Fontaine Gazelles dam with RMSE values of 0.502 m, 0.536 m, and 0.57 m, respectively. The RF model demonstrates remarkable accuracy across all three case studies. This can be attributed to the ensemble structure of RF, as evidenced by the results. This study underscores the significance of considering factors such as seepage flow intensity in understanding WLF variability. Furthermore, the proposed ML models offer promising capabilities in WLF prediction, highlighting their potential utility in enhancing reservoir management practices and addressing the limitations of traditional regression models. Keys words. Embankment dam, Water level fluctuations, Seepage, Artificial neural network, meta-heuristic algorithm.
Keywords: Embankment dam; Water level fluctuations; Seepage; Srtificial neural network; Meta-heuristic algorithm (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-024-03990-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:39:y:2025:i:2:d:10.1007_s11269-024-03990-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-024-03990-x
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().