Navigating the Challenges of Rainfall Variability: Precipitation Forecasting using Coalesce Model
Suraj Kumar Bhagat ()
Additional contact information
Suraj Kumar Bhagat: Marwadi University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2025, vol. 39, issue 5, No 15, 2280 pages
Abstract:
Abstract This study introduces a coalesce forecasting model tailored for flood-prone regions, specifically focusing on Bihar, India. Research has revealed significant disparities in rainfall patterns across various zones such as Tirhut, Patna, and Munger zones experiencing greater mean rainfall than Bhagalpur and Kosi. To evaluate the forecasting capabilities, coalescing methods were applied which includes the autoregressive integrated moving average (ARIMA), exponential smoothing state space (ETS), neural network autoregressive (NNAR), and seasonal-trend decomposition. Moreover, Loess (STL) methods, and trigonometric seasonality, Box‒Cox transformation, ARMA errors, and trend and seasonal components (TBATS) were also employed to contrast the benchmark models such as the seasonal naïve, naïve, and mean methods. These methods were evaluated using error evaluators such as residual error, root mean square error (RMSE), mean absolute error (MAE), mean absolute scaled error (MASE), and autocorrelation of errors at lag 1 (ACF1) to determine the performance of these techniques. Additionally, statistical tests, such as the Box–Pierce and Box–Ljung tests, supported these findings. Among the error evaluators and forecasting models, the ETS and NNAR models remain the top choices for Saran-Tirhut-Bhagalpur and Munger-Magadh-Kosi, respectively, effectively capturing rainfall patterns and minimizing residual errors, as indicated by low RMSE values. Moreover, ARIMA and TBATS remain the top choices for Patna, Purnia and Darbhanga, respectively, followed by ETS model. In addition, the STL model secured the second position for Saran, Tirhut, Bhagalpur, and Purnia zones. This research emphasizes the importance of understanding regional rainfall dynamics for effective flood risk management and climate adaptation strategies. This study provides valuable tools for water resource management and agricultural planning in Bihar amidst climate variability challenges. It advocates for rainfall trend analysis followed by forecasting to achieve more precise water resource management and planning.
Keywords: Bihar; ETS; Flood; Forecasting; Machine learning; NNAR; Precipitation; Rainfall (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-024-04065-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:39:y:2025:i:5:d:10.1007_s11269-024-04065-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-024-04065-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().