Evaluating Secondary School Examination Results: Application of Principal Component Analysis
Elizabeth W. Njoroge,
Gladys G. Njoroge and
Dennis K. Muriithi
Journal of Statistical and Econometric Methods, 2014, vol. 3, issue 2, 3
Abstract:
Results from Kenya National Examination Council (KNEC) indicate that there are schools that have had an upward trend in performance while others have continued to show a decline. This paper seeks to find out the principal components, in terms of subjects, that contribute to this performance. Principal Component Analysis (PCA), a data reduction procedure was applied to assess the performance of the national examination at the Kenya Certificate of Secondary Examination (KCSE) level for the last three years. The schools were purposively selected from Nyanza, Nairobi, Rift Valley and Eastern provinces. Secondary data from KNEC was used and analyzed using SPSS software. The PCA brought out the component loadings and the correlation structure between the different subjects; as a result one component was extracted. The results provided evidence that all the subjects are highly correlated and the first component having the highest variance. This principal component emerged to be English language. Being the subject with the highest sum of the squared loadings, it was concluded that it played the greatest role in performance of the examinations.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.scienpress.com/Upload/JSEM%2fVol%203_2_3.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spt:stecon:v:3:y:2014:i:2:f:3_2_3
Access Statistics for this article
More articles in Journal of Statistical and Econometric Methods from SCIENPRESS Ltd
Bibliographic data for series maintained by Eleftherios Spyromitros-Xioufis ().