EconPapers    
Economics at your fingertips  
 

On the approximation of production functions: a comparison of artificial neural networks frontiers and efficiency techniques

Daniel Santín

Applied Economics Letters, 2008, vol. 15, issue 8, 597-600

Abstract: The aim of this article is to show how Artificial Neural Networks (ANN) is a valid semi-parametric alternative for fitting empirical production functions and measuring technical efficiency. To do this a Monte-Carlo experiment is carried out on a simulated smooth production technology for assessing efficiency results of ANN compared with Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA). As ANNs provides average production function estimations this article proposes a so-called thick frontier strategy for transform average estimations into a productive frontier. Main advantages of ANN are in contexts where the production function is smooth, completely unknown, contains nonlinear relationships among variables and the quantity of noise and efficiency in data is moderate. Under this scenario, the results display that an ANNs algorithm can detect, better than traditional tools, the underlying shape of the production function from observed data.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.informaworld.com/openurl?genre=article& ... 40C6AD35DC6213A474B5 (text/html)
Access to full text is restricted to subscribers.

Related works:
Working Paper: On the Approximation of Production Functions: A Comparison of Artificial Neural Networks Frontiers and Efficiency Techniques (2004) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:apeclt:v:15:y:2008:i:8:p:597-600

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAEL20

DOI: 10.1080/13504850600721973

Access Statistics for this article

Applied Economics Letters is currently edited by Anita Phillips

More articles in Applied Economics Letters from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:apeclt:v:15:y:2008:i:8:p:597-600