EconPapers    
Economics at your fingertips  
 

A dynamic Cholesky data imputation method for correlation structure consistency“

Philip J. Atkins and Mark Cummins

Applied Economics Letters, 2022, vol. 29, issue 4, 311-315

Abstract: In the context of data that is missing completely at random, we propose a new data imputation method that exploits Cholesky decomposition. The data imputation method falls within the multiple imputation framework and is designed to ensure consistency with the correlation structure of the available data. The advantage is an accessible and computationally efficient approach to managing missing data that avoids the model risk associated with applying complex model-based data imputation methods. The non-recursive nature of our data imputation method further avoids the convergence issues associated with recursive approaches.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/13504851.2020.1866153 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:apeclt:v:29:y:2022:i:4:p:311-315

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAEL20

DOI: 10.1080/13504851.2020.1866153

Access Statistics for this article

Applied Economics Letters is currently edited by Anita Phillips

More articles in Applied Economics Letters from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:apeclt:v:29:y:2022:i:4:p:311-315