EconPapers    
Economics at your fingertips  
 

Volatility and risk estimation with linear and nonlinear methods based on high frequency data

Marcel Dettling and Peter Buhlmann

Applied Financial Economics, 2004, vol. 14, issue 10, 717-729

Abstract: Accurate volatility predictions are crucial for the successful implementation of risk management. The use of high frequency data approximately renders volatility from a latent to an observable quantity, and opens new directions to forecast future volatilities. The goals in this paper are: (i) to select an accurate forecasting procedure for predicting volatilities based on high frequency data from various standard models and modern prediction tools; (ii) to evaluate the predictive potential of those volatility forecasts for both the realized and the true latent volatility; and (iii) to quantify the differences using volatility forecasts based on high frequency data and using a GARCH model for low frequency (e.g. daily) data, and study its implication in risk management for two widely used risk measures. The pay-off using high frequency data for the true latent volatility is empirically found to be still present, but magnitudes smaller than suggested by simple analysis.

Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/0960310042000243556 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:apfiec:v:14:y:2004:i:10:p:717-729

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAFE20

DOI: 10.1080/0960310042000243556

Access Statistics for this article

Applied Financial Economics is currently edited by Anita Phillips

More articles in Applied Financial Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:apfiec:v:14:y:2004:i:10:p:717-729