EconPapers    
Economics at your fingertips  
 

Extreme risk measures for REITs: a comparison among alternative methods

Jian Zhou ()

Applied Financial Economics, 2012, vol. 22, issue 2, 113-126

Abstract: Real Estate Investment Trusts (REITs), traditionally known as an asset of low volatility, have been undergoing a period of unprecedentedly high volatility due to the current financial crisis. This has increased the need to search for appropriate methods to cope with extreme risks. This study aims to meet this need by comparing the performances of several commonly used methods in predicting the conditional Value at Risk (VaR) and Expected Shortfall (ES) for REITs. Our competing methods cover all three broad categories (i.e. nonparametric, parametric and semiparametric) classified by Manganelli and Engle (2004) and display a varying degree of complexity. Overall, our results show that the trio of EGARCH skewed t (EGARCH, Exponential Generalized Autoregressive Conditional Heteroscedacity), GARCH t , and GARCH EVT (EVT, Extreme Value Theory) provide the most reliable forecasts among all methods considered. Their good performance, with only a few exceptions, holds up for a variety of quantiles and is robust to the size of the moving window used to make the forecasts. We also find that GARCH normal and RiskMetrics of J.P. Morgan are the worst performers. Filtered Historical Simulation (FHS) models fall somewhere in between.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1080/09603107.2011.605752 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:apfiec:v:22:y:2012:i:2:p:113-126

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAFE20

DOI: 10.1080/09603107.2011.605752

Access Statistics for this article

Applied Financial Economics is currently edited by Anita Phillips

More articles in Applied Financial Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:apfiec:v:22:y:2012:i:2:p:113-126