EconPapers    
Economics at your fingertips  
 

Extreme events from the return-volume process: a discretization approach for complexity reduction

Peter Buhlmann

Applied Financial Economics, 1998, vol. 8, issue 3, 267-278

Abstract: We propose the discretization of real-valued financial time series into few ordinal values and use sparse Markov chains within the framework of generalized linear models for such categorical time series. The discretization operation causes a large reduction in the complexity of the data. We analyse daily return and volume data and estimate the probability structure of the process of lower extreme, upper extreme and the complementary usual events. Knowing the whole probability law of such ordinalvalued vector processes of extreme events of return and volume allows us to quantify non-linear associations. In particular, we find a new kind of asymmetry in the return - volume relationship. Estimated probabilities are also used to compute the MAP predictor whose power is found to be remarkably high.

Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/096031098333023 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:apfiec:v:8:y:1998:i:3:p:267-278

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAFE20

DOI: 10.1080/096031098333023

Access Statistics for this article

Applied Financial Economics is currently edited by Anita Phillips

More articles in Applied Financial Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:apfiec:v:8:y:1998:i:3:p:267-278