Exact Superreplication Strategies for a Class of Derivative Assets
Joel Vanden
Applied Mathematical Finance, 2006, vol. 13, issue 1, 61-87
Abstract:
A superreplicating hedging strategy is commonly used when delta hedging is infeasible or is too expensive. This article provides an exact analytical solution to the superreplication problem for a class of derivative asset payoffs. The class contains common payoffs that are neither uniformly convex nor concave. A digital option, a bull spread, a bear spread, and some portfolios of bull spreads or bear spreads, are all included as special cases. The problem is approached by first solving for the transition density of a process that has a two-valued volatility. Using this process to model the underlying asset and identifying the two volatility values as σmin and σmax, the value function for any derivative asset in the class is shown to solve the Black-Scholes-Barenblatt equation. The subreplication problem and several related extensions, such as option pricing with transaction costs, calculating superreplicating bounds, and superreplication with multiple risky assets, are also addressed.
Keywords: Superreplication; subreplication; uncertain volatility; Black-Scholes-Barenblatt equation; transaction costs (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13504860500117560 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:13:y:2006:i:1:p:61-87
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/13504860500117560
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().