An EZI Method to Reduce the Rank of a Correlation Matrix in Financial Modelling
Massimo Morini and
Nick Webber
Applied Mathematical Finance, 2006, vol. 13, issue 4, 309-331
Abstract:
Reducing the number of factors in a model by reducing the rank of a correlation matrix is a problem that often arises in finance, for instance in pricing interest rate derivatives with Libor market models. A simple iterative algorithm for correlation rank reduction is introduced, the eigenvalue zeroing by iteration, EZI, algorithm. Its convergence is investigated and extension presented with particular optimality properties. The performance of EZI is compared with those of other common methods. Different data sets are considered including empirical data from the interest rate market, different possible market cases and criteria, and a calibration case. The EZI algorithm is extremely fast even in computationally complex situations, and achieves a very high level of precision. From these results, the EZI algorithm for financial application has superior performance to the main methods in current use.
Keywords: Correlation matrix; rank reduction; market models (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13504860600658976 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:13:y:2006:i:4:p:309-331
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/13504860600658976
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().