Return and Value at Risk using the Dirichlet Process
Mahmoud Zarepour,
Thierry Bedard and
Andre Dabrowski
Applied Mathematical Finance, 2008, vol. 15, issue 3, 205-218
Abstract:
There exists a wide variety of models for return, and the chosen model determines the tool required to calculate the value at risk (VaR). This paper introduces an alternative methodology to model-based simulation by using a Monte Carlo simulation of the Dirichlet process. The model is constructed in a Bayesian framework, using properties initially described by Ferguson. A notable advantage of this model is that, on average, the random draws are sampled from a mixed distribution that consists of a prior guess by an expert and the empirical process based on a random sample of historical asset returns. The method is relatively automatic and similar to machine learning tools, e.g. the estimate is updated as new data arrive.
Keywords: Dirichlet process; quantiles; Bayes estimates; value at risk (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13504860701718448 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:15:y:2008:i:3:p:205-218
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/13504860701718448
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().