Partial Hedging in Financial Markets with a Large Agent
Jungmin Choi and
Mattias Jonsson
Applied Mathematical Finance, 2009, vol. 16, issue 4, 331-346
Abstract:
We investigate the partial hedging problem in financial markets with a large agent. An agent is said to be large if his/her trades influence the equilibrium price. We develop a stochastic differential equation (SDE) with a single large agent parameter to model such a market. We focus on minimizing the expected value of the size of the shortfall in the large agent model. A Bellman-type partial differential equation (PDE) is derived, and the Legendre transform is used to consider the dual shortfall function. An asymptotic analysis leads us to conclude that the shortfall function (expected loss) increases when there is a large agent, which means that one would need more capital to hedge away risk in the market with a large agent. This asymptotic analysis is confirmed by performing Monte Carlo simulations.
Keywords: Partial hedging; large agent; Bellman PDE (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13504860802670191 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:16:y:2009:i:4:p:331-346
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/13504860802670191
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().