Real-World Pricing for a Modified Constant Elasticity of Variance Model
Shane Miller and
Eckhard Platen ()
Applied Mathematical Finance, 2010, vol. 17, issue 2, 147-175
Abstract:
This paper considers a modified constant elasticity of variance (MCEV) model. This model uses the familiar constant elasticity of variance form for the volatility of the growth optimal portfolio (GOP) in a continuous market. It leads to a GOP that follows the power of a time-transformed squared Bessel process. This paper derives analytic real-world prices for zero-coupon bonds, instantaneous forward rates and options on the GOP that are both theoretically revealing and computationally efficient. In addition, the paper examines options on exchange prices and options on zero-coupon bonds under the MCEV model. The semi-analytic prices derived for options on zero-coupon bonds can subsequently be used to price interest rate caps and floors.
Keywords: Benchmark approach; real-world pricing; growth optimal portfolio; constant elasticity of variance; zero-coupon bonds; exchange prices; interest rate caps and floors (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13504860903155035 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:17:y:2010:i:2:p:147-175
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/13504860903155035
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().