Risk Minimization for a Filtering Micromovement Model of Asset Price
Kiseop Lee and
Yong Zeng
Applied Mathematical Finance, 2010, vol. 17, issue 2, 177-199
Abstract:
The classical option hedging problems have mostly been studied under continuous-time or equally spaced discrete-time models, which ignore two important components in the actual price: random trading times and market microstructure noise. In this paper, we study optimal hedging strategies for European derivatives based on a filtering micromovement model of asset prices with the two commonly ignored characteristics. We employ the local risk-minimization criterion to develop optimal hedging strategies under full information. Then, we project the hedging strategies on the observed information to obtain hedging strategies under partial information. Furthermore, we develop a related nonlinear filtering technique under the minimal martingale measure for the computation of such hedging strategies.
Keywords: Risk minimization; Minimal martingale measure; Filtering; Counting process; High frequency data (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13504860903259852 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:17:y:2010:i:2:p:177-199
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/13504860903259852
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().