Building an Optimal Portfolio in Discrete Time in the Presence of Transaction Costs
Colin Atkinson and
Emmeline Storey
Applied Mathematical Finance, 2010, vol. 17, issue 4, 323-357
Abstract:
Portfolio theory covers different approaches to the construction of a portfolio offering maximum expected returns for a given level of risk tolerance where the goal is to find the optimal investment rule. Each investor has a certain utility for money which is reflected by the choice of a utility function. In this article, a risk averse power utility function is studied in discrete time for a large class of underlying probability distribution of the returns of the asset prices. Each investor chooses, at the beginning of an investment period, the feasible portfolio allocation which maximizes the expected value of the utility function for terminal wealth. Effects of both large and small proportional transaction costs on the choice of an optimal portfolio are taken into account. The transaction regions are approximated by using asymptotic methods when the proportional transaction costs are small and by using expansions about critical points for large transaction costs.
Keywords: Portfolio optimization; transaction costs; dynamic programming; utility maximization (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13504860903336437 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:17:y:2010:i:4:p:323-357
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/13504860903336437
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().