Implied Filtering Densities on the Hidden State of Stochastic Volatility
Carlos Fuertes and
Andrew Papanicolaou
Applied Mathematical Finance, 2014, vol. 21, issue 6, 483-522
Abstract:
We formulate and analyse an inverse problem using derivative prices to obtain an implied filtering density on volatility's hidden state. Stochastic volatility is the unobserved state in a hidden Markov model (HMM) and can be tracked using Bayesian filtering. However, derivative data can be considered as conditional expectations that are already observed in the market, and which can be used as input to an inverse problem whose solution is an implied conditional density on volatility. Our analysis relies on a specification of the martingale change of measure, which we refer to as separability. This specification has a multiplicative component that behaves like a risk premium on volatility uncertainty in the market. When applied to SPX options data, the estimated model and implied densities produce variance-swap rates that are consistent with the VIX volatility index. The implied densities are relatively stable over time and pick up some of the monthly effects that occur due to the options' expiration, indicating that the volatility-uncertainty premium could experience cyclic effects due to the maturity date of the options.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2014.891357 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:21:y:2014:i:6:p:483-522
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/1350486X.2014.891357
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().