EconPapers    
Economics at your fingertips  
 

Effect of Volatility Clustering on Indifference Pricing of Options by Convex Risk Measures

Rohini Kumar

Applied Mathematical Finance, 2015, vol. 22, issue 1, 63-82

Abstract: In this article, we look at the effect of volatility clustering on the risk indifference price of options described by Sircar and Sturm in their paper (Sircar, R., & Sturm, S. (2012). From smile asymptotics to market risk measures. Mathematical Finance . Advance online publication. doi:10.1111/mafi.12015). The indifference price in their article is obtained by using dynamic convex risk measures given by backward stochastic differential equations. Volatility clustering is modelled by a fast mean-reverting volatility in a stochastic volatility model for stock price. Asymptotics of the indifference price of options and their corresponding implied volatility are obtained in this article, as the mean-reversion time approaches zero. Correction terms to the asymptotic option price and implied volatility are also obtained.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2014.949805 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:22:y:2015:i:1:p:63-82

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20

DOI: 10.1080/1350486X.2014.949805

Access Statistics for this article

Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger

More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:apmtfi:v:22:y:2015:i:1:p:63-82