Dimension and variance reduction for Monte Carlo methods for high-dimensional models in finance
Duy-Minh Dang,
Kenneth R. Jackson and
Mohammadreza Mohammadi
Applied Mathematical Finance, 2015, vol. 22, issue 6, 522-552
Abstract:
One-way coupling often occurs in multi-dimensional models in finance. In this paper, we present a dimension reduction technique for Monte Carlo (MC) methods, referred to as drMC, that exploits this structure for pricing plain-vanilla European options under an N-dimensional one-way coupled model, where N is arbitrary. The dimension reduction also often produces a significant variance reduction.The drMC method is a dimension reduction technique built upon (i) the conditional MC technique applied to one of the factors which does not depend on any other factors in the model, and (ii) the derivation of a closed-form solution to the conditional partial differential equation (PDE) that arises via Fourier transforms. In the drMC approach, the option price can be computed simply by taking the expectation of this closed-form solution. Hence, the approach results in a powerful dimension reduction from N to one, which often results in a significant variance reduction as well, since the variance associated with the other factors in the original model are completely removed from the drMC simulation. Moreover, under the drMC framework, hedging parameters, or Greeks, can be computed in a much more efficient way than in traditional MC techniques. A variance reduction analysis of the method is presented and numerical results illustrating the method’s efficiency are provided.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2015.1110492 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:22:y:2015:i:6:p:522-552
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/1350486X.2015.1110492
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().