Approximate indifference pricing in exponential Lévy models
Clément Ménassé and
Peter Tankov
Applied Mathematical Finance, 2016, vol. 23, issue 3, 197-235
Abstract:
Financial markets based on Lévy processes are typically incomplete and option prices depend on risk attitudes of individual agents. In this context, the notion of utility indifference price has gained popularity in the academic circles. Although theoretically very appealing, this pricing method remains difficult to apply in practice, due to the high computational cost of solving the non-linear partial integro-differential equation associated to the indifference price. In this work, we develop closed-form approximations to exponential utility indifference prices in exponential Lévy models. To this end, we first establish a new non-asymptotic approximation of the indifference price which extends earlier results on small risk aversion asymptotics of this quantity. Next, we use this formula to derive a closed-form approximation of the indifference price by treating the Lévy model as a perturbation of the Black–Scholes model. This extends the methodology introduced in a recent paper for smooth linear functionals of Lévy processes (Černý et al. 2013) to non-linear and non-smooth functionals. Our formula represents the indifference price as the linear combination of the Black–Scholes price and correction terms which depend on the variance, skewness and kurtosis of the underlying Lévy process, and the derivatives of the Black–Scholes price. As a by-product, we obtain a simple approximation for the spread between the buyer’s and the seller’s indifference price. This formula allows to quantify, in a model-independent fashion, how sensitive a given product is to jump risk when jump size is small.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2016.1227270 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:23:y:2016:i:3:p:197-235
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/1350486X.2016.1227270
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().