A dimension and variance reduction Monte-Carlo method for option pricing under jump-diffusion models
Duy-Minh Dang,
Kenneth R. Jackson and
Scott Sues
Applied Mathematical Finance, 2017, vol. 24, issue 3, 175-215
Abstract:
We develop a highly efficient MC method for computing plain vanilla European option prices and hedging parameters under a very general jump-diffusion option pricing model which includes stochastic variance and multi-factor Gaussian interest short rate(s). The focus of our MC approach is variance reduction via dimension reduction. More specifically, the option price is expressed as an expectation of a unique solution to a conditional Partial Integro-Differential Equation (PIDE), which is then solved using a Fourier transform technique. Important features of our approach are (1) the analytical tractability of the conditional PIDE is fully determined by that of the Black–Scholes–Merton model augmented with the same jump component as in our model, and (2) the variances associated with all the interest rate factors are completely removed when evaluating the expectation via iterated conditioning applied to only the Brownian motion associated with the variance factor. For certain cases when numerical methods are either needed or preferred, we propose a discrete fast Fourier transform method to numerically solve the conditional PIDE efficiently. Our method can also effectively compute hedging parameters. Numerical results show that the proposed method is highly efficient.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2017.1358646 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:24:y:2017:i:3:p:175-215
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/1350486X.2017.1358646
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().