EconPapers    
Economics at your fingertips  
 

Price manipulation in a market impact model with dark pool

Florian Klöck, Alexander Schied and Yuemeng Sun

Applied Mathematical Finance, 2017, vol. 24, issue 5, 417-450

Abstract: For a market impact model, price manipulation and related notions play a role that is similar to the role of arbitrage in a derivatives pricing model. Here, we give a systematic investigation into such regularity issues when orders can be executed both at a traditional exchange and in a dark pool. To this end, we focus on a class of dark-pool models whose market impact at the exchange is described by an Almgren–Chriss model. Conditions for the absence of price manipulation for all Almgren–Chriss models include the absence of temporary cross-venue impact, the presence of full permanent cross-venue impact and the additional penalization of orders executed in the dark pool. When a particular Almgren–Chriss model has been fixed, we show by a number of examples that the regularity of the dark-pool model hinges in a subtle way on the interplay of all model parameters and on the liquidation time constraint. The paper can also be seen as a case study for the regularity of market impact models in general.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2017.1406438 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:24:y:2017:i:5:p:417-450

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20

DOI: 10.1080/1350486X.2017.1406438

Access Statistics for this article

Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger

More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:apmtfi:v:24:y:2017:i:5:p:417-450