Two asset-barrier option under stochastic volatility
Barbara Goetz,
Marcos Escobar Anel () and
Rudi Zagst
Applied Mathematical Finance, 2017, vol. 24, issue 6, 520-546
Abstract:
Financial products which depend on hitting times for two underlying assets have become very popular in the last decade. Three common examples are double-digital barrier options, two-asset barrier spread options and double lookback options. Analytical expressions for the joint distribution of the endpoints and the maximum and/or minimum values of two assets are essential in order to obtain quasi-closed form solutions for the price of these derivatives. Earlier authors derived quasi-closed form pricing expressions in the context of constant volatility and correlation. More recently solutions were provided in the presence of a common stochastic volatility factor but with restricted correlations due to the use of a method of images. In this article, we generalize this finding by allowing any value for the correlation. In this context, we derive closed-form expressions for some two-asset barrier options.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2017.1419910 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:24:y:2017:i:6:p:520-546
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/1350486X.2017.1419910
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().