Dynamic Index Tracking and Risk Exposure Control Using Derivatives
Tim Leung and
Brian Ward
Applied Mathematical Finance, 2018, vol. 25, issue 2, 180-212
Abstract:
We develop a methodology for index tracking and risk exposure control using financial derivatives. Under a continuous-time diffusion framework for price evolution, we present a pathwise approach to construct dynamic portfolios of derivatives in order to gain exposure to an index and/or market factors that may be not directly tradable. Among our results, we establish a general tracking condition that relates the portfolio drift to the desired exposure coefficients under any given model. We also derive a slippage process that reveals how the portfolio return deviates from the targeted return. In our multi-factor setting, the portfolio’s realized slippage depends not only on the realized variance of the index but also the realized covariance among the index and factors. We implement our trading strategies under a number of models, and compare the tracking strategies and performances when using different derivatives, such as futures and options.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2018.1507750 (text/html)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Dynamic Index Tracking and Risk Exposure Control Using Derivatives (2017) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:25:y:2018:i:2:p:180-212
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/1350486X.2018.1507750
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().