A numerically efficient closed-form representation of mean-variance hedging for exponential additive processes based on Malliavin calculus
Takuji Arai and
Yuto Imai
Applied Mathematical Finance, 2018, vol. 25, issue 3, 247-267
Abstract:
We focus on mean-variance hedging problem for models whose asset price follows an exponential additive process. Some representations of mean-variance hedging strategies for jump-type models have already been suggested, but none is suited to develop numerical methods of the values of strategies for any given time up to the maturity. In this paper, we aim to derive a new explicit closed-form representation, which enables us to develop an efficient numerical method using the fast Fourier transforms. Note that our representation is described in terms of Malliavin derivatives. In addition, we illustrate numerical results for exponential Lévy models.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2018.1506259 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:25:y:2018:i:3:p:247-267
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/1350486X.2018.1506259
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().