High-dimensional Statistical Arbitrage with Factor Models and Stochastic Control
Jorge Guijarro-Ordonez
Applied Mathematical Finance, 2019, vol. 26, issue 4, 328-358
Abstract:
The present paper provides a study of high-dimensional statistical arbitrage that combines factor models with the tools from stochastic control, obtaining closed-form optimal strategies which are both interpretable and computationally implementable in a high-dimensional setting. Our setup is based on a general statistically constructed factor model with mean-reverting residuals, in which we show how to construct analytically market-neutral portfolios and we analyse the problem of investing optimally in continuous time and finite horizon under exponential and mean-variance utilities. We also extend our model to incorporate constraints on the investor’s portfolio like dollar-neutrality and market frictions in the form of temporary quadratic transaction costs, provide extensive Monte Carlo simulations of the previous strategies with 100 assets, and describe further possible extensions of our work.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2019.1702067 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:26:y:2019:i:4:p:328-358
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/1350486X.2019.1702067
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().