EconPapers    
Economics at your fingertips  
 

Network Effects in Default Clustering for Large Systems

Konstantinos Spiliopoulos and Jia Yang

Applied Mathematical Finance, 2019, vol. 26, issue 6, 523-582

Abstract: We consider a large collection of dynamically interacting components defined on a weighted-directed graph determining the impact of the default of one component to another one. We prove a law of large numbers for the empirical measure capturing the evolution of the different components in the pool and from this we extract important information for quantities such as the loss rate in the overall pool as well as the mean impact on a given component from system-wide defaults. A singular value decomposition of the adjacency matrix of the graph allows to coarse-grain the system by focusing on the highest eigenvalues which also correspond to the components with the highest contagion impact on the pool. Numerical simulations demonstrate the theoretical findings.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2020.1724804 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:26:y:2019:i:6:p:523-582

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20

DOI: 10.1080/1350486X.2020.1724804

Access Statistics for this article

Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger

More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:apmtfi:v:26:y:2019:i:6:p:523-582