Network Effects in Default Clustering for Large Systems
Konstantinos Spiliopoulos and
Jia Yang
Applied Mathematical Finance, 2019, vol. 26, issue 6, 523-582
Abstract:
We consider a large collection of dynamically interacting components defined on a weighted-directed graph determining the impact of the default of one component to another one. We prove a law of large numbers for the empirical measure capturing the evolution of the different components in the pool and from this we extract important information for quantities such as the loss rate in the overall pool as well as the mean impact on a given component from system-wide defaults. A singular value decomposition of the adjacency matrix of the graph allows to coarse-grain the system by focusing on the highest eigenvalues which also correspond to the components with the highest contagion impact on the pool. Numerical simulations demonstrate the theoretical findings.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2020.1724804 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:26:y:2019:i:6:p:523-582
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/1350486X.2020.1724804
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().