EconPapers    
Economics at your fingertips  
 

Electricity Price Forecasting with Neural Networks on EPEX Order Books

Simon Schnürch and Andreas Wagner

Applied Mathematical Finance, 2020, vol. 27, issue 3, 189-206

Abstract: This paper employs machine learning algorithms to forecast German electricity spot market prices. The forecasts utilize in particular bid and ask order book data from the spot market but also fundamental market data like renewable infeed and expected total demand. Appropriate feature extraction for the order book data is developed proceeding from existing literature. Using cross-validation to optimize hyperparameters, neural networks and random forests are fit to the data. Their in-sample and out-of-sample performance is compared to statistical reference models. The machine learning models outperform traditional approaches.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2020.1805337 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:27:y:2020:i:3:p:189-206

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20

DOI: 10.1080/1350486X.2020.1805337

Access Statistics for this article

Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger

More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:apmtfi:v:27:y:2020:i:3:p:189-206