American Strangle Options
Shi Qiu
Applied Mathematical Finance, 2020, vol. 27, issue 3, 228-263
Abstract:
In this paper, we show that the double optimal stopping boundaries for American strangle options with finite horizon can be characterized as the unique pair of solution to a system of two nonlinear integral equations arising from the early exercise premium (EEP) representation. The proof of EEP representation is based on the change-of-variable formula with local time on curves. After comparing the return of the alternative portfolio including an American call and an American put option, we find that it is more preferable for an investor to select American strangle options to hedge an underlying asset with high volatility.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2020.1825968 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:27:y:2020:i:3:p:228-263
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/1350486X.2020.1825968
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().