EconPapers    
Economics at your fingertips  
 

Detecting and Repairing Arbitrage in Traded Option Prices

Samuel N. Cohen, Christoph Reisinger and Sheng Wang

Applied Mathematical Finance, 2020, vol. 27, issue 5, 345-373

Abstract: Option price data are used as inputs for model calibration, risk-neutral density estimation and many other financial applications. The presence of arbitrage in option price data can lead to poor performance or even failure of these tasks, making pre-processing of the data to eliminate arbitrage necessary. Most attention in the relevant literature has been devoted to arbitrage-free smoothing and filtering (i.e., removing) of data. In contrast to smoothing, which typically changes nearly all data, or filtering, which truncates data, we propose to repair data by only necessary and minimal changes. We formulate the data repair as a linear programming (LP) problem, where the no-arbitrage relations are constraints, and the objective is to minimize prices’ changes within their bid and ask price bounds. Through empirical studies, we show that the proposed arbitrage repair method gives sparse perturbations on data, and is fast when applied to real-world large-scale problems due to the LP formulation. In addition, we show that removing arbitrage from prices data by our repair method can improve model calibration with enhanced robustness and reduced calibration error.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2020.1846573 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:27:y:2020:i:5:p:345-373

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20

DOI: 10.1080/1350486X.2020.1846573

Access Statistics for this article

Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger

More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:apmtfi:v:27:y:2020:i:5:p:345-373