On the Valuation of Discrete Asian Options in High Volatility Environments
Sascha Desmettre and
Jörg Wenzel
Applied Mathematical Finance, 2021, vol. 28, issue 6, 508-533
Abstract:
In this paper, we are concerned with the Monte Carlo valuation of discretely sampled arithmetic and geometric average options in the Black-Scholes model and the stochastic volatility model of Heston in high volatility environments. To this end, we examine the limits and convergence rates of asset prices in these models when volatility parameters tend to infinity. We observe, on the one hand, that asset prices, as well as their arithmetic means converge to zero almost surely, while the respective expectations are constantly equal to the initial asset price. On the other hand, the expectation of geometric means of asset prices converges to zero. Moreover, we elaborate on the direct consequences for option prices based on such means and illustrate the implications of these findings for the design of efficient Monte-Carlo valuation algorithms. As a suitable control variate, we need among others the price of such discretely sampled geometric Asian options in the Heston model, for which we derive a closed-form solution.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2022.2108858 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:28:y:2021:i:6:p:508-533
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/1350486X.2022.2108858
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().