A multiplicative model for volume and volatility
Rob Bauer and
Fred Nieuwland
Applied Mathematical Finance, 1995, vol. 2, issue 3, 135-154
Abstract:
We first present prima facie evidence for the predictions generated by the mixture of distributions hypothesis, using daily German stock returns and their corresponding daily trading volumes and number of trades. These last two variables are used as proxies for the stochastic rate of information arrival when one wishes to explain GARCH effects by adhering to the mixture of distributions hypothesis. We show that there is no need for these proxies when the stochastic rate of information arrival follows an inverted gamma distribution. Daily trading volume and the daily number of trades, however, empirically provide an explanation for the occurrence of conditional heteroskedasticity of the GARCH form. We estimate several specifications where daily trading volume is included in the conditional variance equation additively and multiplicatively. The new multiplicative specification clearly outperforms the additive specification.
Date: 1995
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13504869500000008 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:2:y:1995:i:3:p:135-154
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/13504869500000008
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().