Fuzzy measures and asset prices: accounting for information ambiguity
Umberto Cherubini
Applied Mathematical Finance, 1997, vol. 4, issue 3, 135-149
Abstract:
A recent stream of literature has suggested that many market imperfections or 'puzzles' can be easily explained once information ambiguity, or knightian uncertainty is taken into account. Here we propose a parametric representation of this concept by means of a special class of fuzzy measures, known as gλ-measures. The parameter λ may be considered an indicator of uncertainty. Starting with a distribution, a value λ in (0, ∞) and a benchmark utility function we obtain a sub-additive expected utility, representing uncertainty aversion. A dual value λ* in (-1, 0) defining a super-additive expected utility is also recovered, while the benchmark expected utility is obtained for λ = λ* = 0. The two measures may be considered as lower and upper bounds of expected utility with respect to a set of probability measures, in the spirit of Gilboa-Schmeidler MMEU theory and of Dempster probability interval approach. The parametrization may be used to determine the effect of information ambiguity on asset prices in a very straightforward way. As examples, we determine the price of a corporate debt contract and a 'fuzzified' version of the Black and Scholes model.
Keywords: Knightian Uncertainty; Market Incompleteness; Non-additive Measures; Asset Pricing (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/135048697334773 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:4:y:1997:i:3:p:135-149
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/135048697334773
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().