Markov interest rate models
Patrick Hagan and
Diana Woodward
Applied Mathematical Finance, 1999, vol. 6, issue 4, 233-260
Abstract:
A general procedure for creating Markovian interest rate models is presented. The models created by this procedure automatically fit within the HJM framework and fit the initial term structure exactly. Therefore they are arbitrage free. Because the models created by this procedure have only one state variable per factor, twoand even three-factor models can be computed efficiently, without resorting to Monte Carlo techniques. This computational efficiency makes calibration of the new models to market prices straightforward. Extended Hull- White, extended CIR, Black-Karasinski, Jamshidian's Brownian path independent models, and Flesaker and Hughston's rational log normal models are one-state variable models which fit naturally within this theoretical framework. The 'separable' n-factor models of Cheyette and Li, Ritchken, and Sankarasubramanian - which require n(n + 3)/2 state variables - are degenerate members of the new class of models with n(n + 3)/2 factors. The procedure is used to create a new class of one-factor models, the 'β-η models.' These models can match the implied volatility smiles of swaptions and caplets, and thus enable one to eliminate smile error. The β-η models are also exactly solvable in that their transition densities can be written explicitly. For these models accurate - but not exact - formulas are presented for caplet and swaption prices, and it is indicated how these closed form expressions can be used to efficiently calibrate the models to market prices.
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13504869950079275 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:6:y:1999:i:4:p:233-260
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/13504869950079275
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().