Arbitrage valuation and bounds for sinking-fund bonds with multiple sinking-fund dates
Anna Rita Bacinello and
Fulvio Ortu
Applied Mathematical Finance, 1999, vol. 6, issue 4, 293-312
Abstract:
The paper tackles the problem of pricing, under interest-rate risk, a default-free sinking-fund bond which allows its issuer to recurrently retire part of the issue by (a) a lottery call at par, or (b) an open market repurchase. By directly modelling zero-coupon bonds as diffusions driven by a single-dimensional Brownian motion, a pricing formula is supplied for the sinking-fund bond based on a backward induction procedure which exploits, at each step, the martingale approach to the valuation of contingent-claims. With more than one sinking-fund date, however, the pricing formula is not in closed form, not even for simple parametrizations of the process for zerocoupon bonds, so that a numerical approach is needed. Since the computational complexity increases exponentially with the number of sinking-fund dates, arbitrage-based lower and upper bounds are provided for the sinking-fund bond price. The computation of these bounds is almost effortless when zero-coupon bonds are as described by Cox, Ingersoll and Ross. Numerical comparisons between the price of the sinking-fund bond obtained via Monte Carlo simulation and these lower and upper bounds are illustrated for different choices of parameters.
Keywords: Sinking-FUND Bonds Multiple Sinking-FUND Dates Interest Rate Risk Martingale Approach Cir Model Monte Carlo Simulation (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13504869950079301 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:6:y:1999:i:4:p:293-312
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/13504869950079301
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().