The pricing of derivatives on assets with quadratic volatility
Christian Zuhlsdorff
Applied Mathematical Finance, 2001, vol. 8, issue 4, 235-262
Abstract:
The basic model of financial economics is the Samuelson model of geometric Brownian motion because of the celebrated Black-Scholes formula for pricing the call option. The asset's volatility is a linear function of the asset value and the model guarantees positive asset prices. In this paper, it is shown that the pricing partial differential equation can be solved for level-dependent volatility which is a quadratic polynomial. If zero is attainable, both absorption and negative asset values are possible. Explicit formulae are derived for the call option: a generalization of the Black-Scholes formula for an asset whose volatiliy is affine, the formula for the Bachelier model with constant volatility, and new formulae in the case of quadratic volatility. The implied Black-Scholes volatilities of the Bachelier and the affine model are frowns, the quadratic specifications imply smiles.
Keywords: Strong Solutions; Stochastic Differential Equation; Option Pricing; Quadratic Volatility; Implied Volatility; Smiles; Frowns (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13504860210127271 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:8:y:2001:i:4:p:235-262
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/13504860210127271
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().