Detecting structural breaks in tail behaviour -- from the perspective of fitting the generalized Pareto distribution
Wei-han Liu
Applied Economics, 2013, vol. 45, issue 10, 1273-1286
Abstract:
Extreme Value Theory (EVT) is heavily applied in modelling tail behaviour. Previous literature uses the tail index to test for Structural Breaks (SBs) in the tails. This study presents another more reliable approach and relies on the outperformance of the Generalized Pareto Distribution (GPD) in modelling tails. The transformed GPD is treated as a classical Ordinary Least Square (OLS) regression and the generalized M-fluctuation test (Zeileis, 2005, 2006) is applied because it is a unified approach based on Maximum Likelihood (ML) scores (Andrews and Ploberger, 1994), F -statistics (1989, 1992), and OLS residuals (Ploberger and Kramer, 1992). The outcomes indicate that there are multiple SBs not only in all of the three exchange return series considered (UK Pound, Japanese Yen and New Taiwan Dollar, all versus US Dollar) but also GPD parameter estimation at extreme quantile levels. Based on these empirical analyses, it is advisable that EVT should be used with caution at extreme quantile levels.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00036846.2011.613803 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:applec:45:y:2013:i:10:p:1273-1286
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAEC20
DOI: 10.1080/00036846.2011.613803
Access Statistics for this article
Applied Economics is currently edited by Anita Phillips
More articles in Applied Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().