EconPapers    
Economics at your fingertips  
 

Neural network forecasts of input-output technology

Christos Papadas and W. George Hutchinson

Applied Economics, 2002, vol. 34, issue 13, 1607-1615

Abstract: A significant part of the literature on input-output (IO) analysis is dedicated to the development and application of methodologies forecasting and updating technology coefficients and multipliers. Prominent among such techniques is the RAS method, while more information demanding econometric methods, as well as other less promising ones, have been proposed. However, there has been little interest expressed in the use of more modern and often more innovative methods, such as neural networks in IO analysis in general. This study constructs, proposes and applies a Backpropagation Neural Network (BPN) with the purpose of forecasting IO technology coefficients and subsequently multipliers. The RAS method is also applied on the same set of UK IO tables, and the discussion of results of both methods is accompanied by a comparative analysis. The results show that the BPN offers a valid alternative way of IO technology forecasting and many forecasts were more accurate using this method. Overall, however, the RAS method outperformed the BPN but the difference is rather small to be systematic and there are further ways to improve the performance of the BPN.

Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/00036840110118133 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:applec:v:34:y:2002:i:13:p:1607-1615

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAEC20

DOI: 10.1080/00036840110118133

Access Statistics for this article

Applied Economics is currently edited by Anita Phillips

More articles in Applied Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:applec:v:34:y:2002:i:13:p:1607-1615