Risk forecasting models and optimal portfolio selection
David Moreno (),
Paulina Marco and
Ignacio Olmeda
Applied Economics, 2005, vol. 37, issue 11, 1267-1281
Abstract:
This study analyses, from an investor's perspective, the performance of several risk forecasting models in obtaining optimal portfolios. The plausibility of the homoscedastic hypothesis implied in the classical Markowitz model is dicussed and more general models which take into account assymetry and time varying risk are analysed. Specifically, it studies whether ARCH-type based models obtain portfolios whose risk-adjusted returns exceed those of the classical Markowitz model. The same analysis is performed with models based on the Lower Partial Moment (LPM) which take into account the assymetry in the distribution of returns. The results suggest that none of the models achieve a clearly superior average performance. It is also found that models based on semivariance perform as well as those based on the variance, but not better than, even if the evaluation criterion is based on the Reward-to-Semivariance ratio. When attention turns to the analysis of worst case performance, the results are clearly different. Models which employ LPM with a high degree of risk aversion (n>2) as the risk measure are consistently superior to those which employ a symmetric measure, either homoscedastic or heteroscedastic.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/00036840500109142 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:applec:v:37:y:2005:i:11:p:1267-1281
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAEC20
DOI: 10.1080/00036840500109142
Access Statistics for this article
Applied Economics is currently edited by Anita Phillips
More articles in Applied Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().