A stationary unbiased finite sample ARCH-LM test procedure
Par Sjolander
Applied Economics, 2010, vol. 43, issue 8, 1019-1033
Abstract:
Engle's (1982) Autoregressive Conditional Heteroscedasticity-Lagrange Multiplier (ARCH-LM) test is the undisputed standard test to detect ARCH. In this article, Monte Carlo (MC) simulations are used to demonstrate that the test's statistical size is biased in finite samples. Two complementing remedies to the related problems are proposed. One simple solution is to simulate new unbiased critical values for the ARCH-LM test. A second solution is based on the observation that for econometrics practitioners, detection of ARCH is generally followed by remedial modelling of this time-varying heteroscedasticity by the most general and robust model in the ARCH family; the Generalized ARCH (GARCH(1,1)) model. If the GARCH model's stationarity constraints are violated, as in fact is very often the case, obviously, we can conclude that ARCH-LM's detection of conditional heteroscedasticity has no or limited practical value. Therefore, formulated as a function of whether the GARCH model's stationarity constraints are satisfied or not, an unbiased and more relevant two-stage ARCH-LM test is specified. If the primary objectives of the study are to detect and remedy the problems of conditional heteroscedasticity, or to interpret GARCH parameters, the use of this article's new two-stage procedure, 2-Stage Unbiased ARCH-LM (2S-UARCH-LM), is strongly recommended.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/00036840802600046 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:applec:v:43:y:2010:i:8:p:1019-1033
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAEC20
DOI: 10.1080/00036840802600046
Access Statistics for this article
Applied Economics is currently edited by Anita Phillips
More articles in Applied Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().