EconPapers    
Economics at your fingertips  
 

Maximum likelihood ranking in racing sports

A. Anderson

Applied Economics, 2014, vol. 46, issue 15, 1778-1787

Abstract: Most ranking methods used in racing sports are based on the number of points earned in a series of races. In some applications, this method will fail to provide an accurate ranking of competitors based on ability. In particular, rankings will not accurately reflect ability when competitors enter different numbers of races or when the level of competition varies by race. Additionally, point-based rankings are dependent on a subjective points scale. Three alternative models of performance and corresponding maximum likelihood estimation methods are presented that can be used to rank competitors and overcome the shortcomings of point-based rankings. Two methods are based on paired-comparisons among competitors and can be estimated using common binary-choice regression methods; the other is based on the rank-ordered logit model. These methods are valuable tools for stakeholders who need to evaluate the relative abilities of competitors to efficiently allocate resources. Application is demonstrated using results from the 2012 Formula One season, and the results of the maximum likelihood methods are compared to each other and the official point-based rankings.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/00036846.2014.884702 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:applec:v:46:y:2014:i:15:p:1778-1787

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAEC20

DOI: 10.1080/00036846.2014.884702

Access Statistics for this article

Applied Economics is currently edited by Anita Phillips

More articles in Applied Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:applec:v:46:y:2014:i:15:p:1778-1787