Markov regime-switching Beta--EGARCH
Szabolcs Blazsek and
Han-Chiang Ho
Applied Economics, 2017, vol. 49, issue 47, 4793-4805
Abstract:
We suggest a Markov regime-switching (MS) Beta-t-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) model for U.S. stock returns. We compare the in-sample statistical performance of the MS Beta-t-EGARCH model with that of the single-regime Beta-t-EGARCH model. For both models we consider leverage effects for conditional volatility. We use data from the Standard Poor’s 500 (S&P 500) index and also a random sample that includes 50 components of the S&P 500. We study the outlier-discounting property of the single-regime Beta-t-EGARCH and MS Beta-t-EGARCH models. For the S&P 500, we show that for the MS Beta-t-EGARCH model extreme observations are discounted more for the low-volatility regime than for the high-volatility regime. The conditions of consistency and asymptotic normality of the maximum likelihood estimator are satisfied for both the single-regime and MS Beta-t-EGARCH models. All likelihood-based in-sample statistical performance metrics suggest that the MS Beta-t-EGARCH model is superior to the single-regime Beta-t-EGARCH model. We present an application to the out-of-sample density forecast performance of both models. The results show that the density forecast performance of the MS Beta-t-EGARCH model is superior to that of the single-regime Beta-t-EGARCH model.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/00036846.2017.1293794 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:applec:v:49:y:2017:i:47:p:4793-4805
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAEC20
DOI: 10.1080/00036846.2017.1293794
Access Statistics for this article
Applied Economics is currently edited by Anita Phillips
More articles in Applied Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().