EconPapers    
Economics at your fingertips  
 

Forecasting volatility in the Indian equity market using return and range-based models

Karthik Raju and Saravanan Rangaswamy

Applied Economics, 2017, vol. 49, issue 49, 5027-5039

Abstract: In this article, we assess the time-varying volatility of the National Stock Exchange in the Indian equity market using unconditional estimators and asymmetric conditional econometric models. The volatility estimate and forecast is computed from the interday return and intraday range-based data of the exchange’s flagship index, CNX NIFTY, for the time period spanning 1 January 2009 through 31 December 2013. These are our findings: First, we determine that the time-varying volatility of the index is asymmetric with qualities of stationarity and leptokurtic distribution. Second, the one-step-ahead volatility forecast derived from the univariate time series parameters through the GJR-GARCH ​​​​​process indicates that the model evaluation criteria of the autoregressive process tends towards range-based models vis-à-vis a return-based model. The validity of this methodology is further analysed with the superior predictive ability test, the outcome of which supports the use of range-based conditional models. Finally, among the evaluated range-based model variants, the model confidence set procedure favours the Yang–Zhang estimator as being better suited to forecast the exchange’s volatility than the ones by Parkinson, Garman–Klass and Rogers–Satchell.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00036846.2017.1299099 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:applec:v:49:y:2017:i:49:p:5027-5039

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAEC20

DOI: 10.1080/00036846.2017.1299099

Access Statistics for this article

Applied Economics is currently edited by Anita Phillips

More articles in Applied Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:applec:v:49:y:2017:i:49:p:5027-5039