Score-driven Markov-switching EGARCH models: an application to systematic risk analysis
Szabolcs Blazsek,
Han-Chiang Ho and
Su-Ping Liu
Applied Economics, 2018, vol. 50, issue 56, 6047-6060
Abstract:
We introduce new Markov-switching (MS) dynamic conditional score (DCS) exponential generalized autoregressive conditional heteroscedasticity (EGARCH) models, to be used by practitioners for forecasting value-at-risk (VaR) and expected shortfall (ES) in systematic risk analysis. We use daily log-return data from the Standard & Poor’s 500 (S&P 500) index for the period 1950–2016. The analysis of the S&P 500 is useful, for example, for investors of (i) well-diversified US equity portfolios; (ii) S&P 500 futures and options traded at Chicago Mercantile Exchange Globex; (iii) exchange traded funds (ETFs) related to the S&P 500. The new MS DCS-EGARCH models are alternatives to of the recent MS Beta-t-EGARCH model that uses the symmetric Student’s t distribution for the error term. For the new models, we use more flexible asymmetric probability distributions for the error term: Skew-Gen-t (skewed generalized t), EGB2 (exponential generalized beta of the second kind) and NIG (normal-inverse Gaussian) distributions. For all MS DCS-EGARCH models, we identify high- and low-volatility periods for the S&P 500. We find that the statistical performance of the new MS DCS-EGARCH models is superior to that of the MS Beta-t-EGARCH model. As a practical application, we perform systematic risk analysis by forecasting VaR and ES.Abbreviation Single regime (SR); Markov-switching (MS); dynamic conditional score (DCS); exponential generalized autoregressive conditional heteroscedasticity (EGARCH); value-at-risk (VaR); expected shortfall (ES); Standard & Poor's 500 (S&P 500); exchange traded funds (ETFs); Skew-Gen-t (skewed generalized t); EGB2 (exponential generalized beta of the second kind); NIG (normal-inverse Gaussian); log-likelihood (LL); standard deviation (SD); partial autocorrelation function (PACF); likelihood-ratio (LR); ordinary least squares (OLS); heteroscedasticity and autocorrelation consistent (HAC); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan-Quinn criterion (HQC).
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://hdl.handle.net/10.1080/00036846.2018.1488073 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:applec:v:50:y:2018:i:56:p:6047-6060
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAEC20
DOI: 10.1080/00036846.2018.1488073
Access Statistics for this article
Applied Economics is currently edited by Anita Phillips
More articles in Applied Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().