EconPapers    
Economics at your fingertips  
 

The risks of cryptocurrencies with long memory in volatility, non-normality and behavioural insights

Tak Kuen Siu

Applied Economics, 2021, vol. 53, issue 17, 1991-2014

Abstract: This paper aims to study the impacts of long memory in conditional volatility and conditional non-normality on market risks in Bitcoin and some other cryptocurrencies using an Autoregressive Fractionally Integrated GARCH model with non-normal innovations. Two tail-based risk metrics, namely Value at Risk (VaR) and Expected Shortfall (ES), are adopted to study the tail behaviour of market risks in Bitcoin and some other cryptocurrencies. Empirical investigations for the tail behaviour based on real exchange rate data of cryptocurrencies are conducted. An extreme-value-theory-based approach is used to study potential improvements in the estimation for the risk metrics under GARCH-type models. The possibility of explosive regimes in cryptocurrencies’ volatilities is examined using Markov-switching GARCH models.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1080/00036846.2020.1854669 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:applec:v:53:y:2021:i:17:p:1991-2014

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAEC20

DOI: 10.1080/00036846.2020.1854669

Access Statistics for this article

Applied Economics is currently edited by Anita Phillips

More articles in Applied Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:applec:v:53:y:2021:i:17:p:1991-2014