EconPapers    
Economics at your fingertips  
 

Extensions of the Activity Chain Optimization Method

Domokos Esztergár-Kiss, Zoltán Rózsa and Tamás Tettamanti

Journal of Urban Technology, 2018, vol. 25, issue 2, 125-142

Abstract: For the optimization of daily activity chains a novel method has been elaborated, where flexible demand points were introduced. Some activities are not necessarily fixed temporally and spatially, therefore they can be realized in different times or locations. By using flexible demand points, the method is capable of finding new combinations of activity chains and choosing the optimal set of activities. The optimization algorithm solves the TSP-TW (Traveling Salesman Problem – Time Window) problem with many flexible demand points, which resulted in high complexity and long processing times. Therefore, two extensions were developed to speed up the processes. A POI (Point Of Interest) search algorithm enabled to search demand points in advance and store them in an offline database. Furthermore GA (genetic algorithm) was applied and customized to realize lower optimization times. During the implementation, three different transportation modes were defined: car, public transport, and combined (public transport with car-sharing opportunity). The simulations were performed on arbitrarily chosen test networks using Matlab. Promising test results were obtained for all transportation modes with total travel time reduction of 10–15 percent. The application of the extended optimization method produced shorter activity chains and decreased total travel time for the users.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10630732.2017.1407998 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:cjutxx:v:25:y:2018:i:2:p:125-142

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/cjut20

DOI: 10.1080/10630732.2017.1407998

Access Statistics for this article

Journal of Urban Technology is currently edited by Richard E. Hanley

More articles in Journal of Urban Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:cjutxx:v:25:y:2018:i:2:p:125-142