EconPapers    
Economics at your fingertips  
 

Predicting completed project cost using bidding data

Trefor Williams

Construction Management and Economics, 2002, vol. 20, issue 3, 225-235

Abstract: Neural network and regression models have been developed to predict the completed cost of competitively bid highway projects constructed by the New Jersey Department of Transportation. Bid information was studied for inclusion as inputs to the models. Data studied included the low bid, median bid, standard devi9 ation of the bids, expected project duration and the number of bids. A natural log transformation of the data was found to improve the linear relationship between the low bid and completed cost. The stepwise regression procedure was applied, and yielded the best performing predictive model. This regression model used only the natural log of the low bid as independent variable to predict the natural log of the completed cost. Radial basis neural networks were also constructed to predict the final cost. The best performing regres4 sion model produced superior predictions to the best performing neural network model. Hybrid models that used a regression model prediction as an input to a neural network were also studied and were found to also produce reasonable predictions. The calculated models produced good predictions of the completed project cost, but were found to be deficient in predicting very large cost increases. Simple models using the natural log of the low bid as input produced the best results. From the analysis it may be concluded that additional information about the variability of the bids submitted does not provide useful information for predicting the final project outcome.

Keywords: Bidding; Project Costs; Neural Networks; Regression Analysis (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/01446190110112838 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:conmgt:v:20:y:2002:i:3:p:225-235

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RCME20

DOI: 10.1080/01446190110112838

Access Statistics for this article

Construction Management and Economics is currently edited by Will Hughes

More articles in Construction Management and Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:conmgt:v:20:y:2002:i:3:p:225-235