Application of the entropy technique and genetic algorithms to construction site layout planning of medium-size projects
K. C. Lam,
C. M. Tang and
W. C. Lee
Construction Management and Economics, 2005, vol. 23, issue 2, 127-145
Abstract:
Genetic algorithms (GAs) have been introduced into site layout planning as reported in a number of studies. In these studies, the objective functions were defined so as to employ the GAs in searching for the optimal site layout. However, few studies have been carried out to investigate the actual closeness of relationships between site facilities; it is these relationships that ultimately govern the site layout. This study has determined that the underlying factors of site layout planning for medium-size projects include work flow, personnel flow, safety and environment, and personal preferences. By finding the weightings on these factors and the corresponding closeness indices between each facility, a closeness relationship has been deduced. Two contemporary mathematical approaches - fuzzy logic theory and an entropy measure - were adopted in finding these results in order to minimize the uncertainty and vagueness of the collected data and improve the quality of the information. GAs were then applied to searching for the optimal site layout in a medium-size government project using the GeneHunter software. The objective function involved minimizing the total travel distance. An optimal layout was obtained within a short time. This reveals that the application of GA to site layout planning is highly promising and efficient.
Keywords: Site-layout; entropy; genetic algorithm; decision-making (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/0144619042000202834 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:conmgt:v:23:y:2005:i:2:p:127-145
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RCME20
DOI: 10.1080/0144619042000202834
Access Statistics for this article
Construction Management and Economics is currently edited by Will Hughes
More articles in Construction Management and Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().